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TheWegner orbital model is a class of random operators introduced byWegner tomodel

the motion of a quantum particle with many internal degrees of freedom (orbitals) in a

disordered medium. We consider the case when the matrix potential is Gaussian, and

prove three results: localisation at strong disorder, a Wegner-type estimate on the mean

density of eigenvalues, and aMinami-type estimate on the probability of havingmultiple

eigenvalues in a short interval. The last two results are proved in themore general setting

of deformed block-Gaussianmatrices, which includes a class of Gaussian bandmatrices

as a special case. Emphasis is placed on the dependence of the bounds on the number of

orbitals. As an additional application, we improve the upper bound on the localisation

length for one-dimensional Gaussian band matrices.

1 Statement of Results

The current investigation is motivated by the work of Wegner [42] and its continuation

by Schäfer andWegner [35] and Oppermann andWegner [30] on themotion of a quantum

particle with many (N � 1) internal degrees of freedom in a disordered medium.
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The Hamiltonian H of the quantum particle acts on a dense subset of �2(Zd →
C
N), the space of square-integrable functions from Z

d to C
N , via

(Hψ)(x) = V(x)ψ(x)+
∑
y :y∼x

W(x,y)ψ(y) , x ∈ Z
d , (1.1)

where the potential entries V(x) are N × N Hermitian matrices, and the hopping terms

W(x,y) are N ×N matrices with the Hermitian constraintW(y,x) = W(x,y)∗. Following

[42], we take the potential entries and hopping terms random and assume them to be

independent up to the Hermitian constraint, meaning that

{
V(x) | x ∈ Z

d
} ⋃ {

W(x,y) | x,y ∈ Z
d,x has even sum of coordinates and x ∼ y

}
are jointly independent. We assume that either the distribution of each V(x) is given

by the Gaussian Orthogonal Ensemble (GOE), and that the matrices W(x,y) are real

(orthogonal case), or that the distribution of each V(x) is given by the Gaussian Unitary

Ensemble (GUE) (unitary case). Here, the probability density of the GOE with respect to

the Lebesgue measure on real symmetric matrices is proportional to exp
{−N

4 trV
2
}
, and

the probability density of the GUE with respect to the Lebesgue measure on Hermitian

matrices is proportional to exp
{−N

2 trV
2
}
.

Special cases of themodel (1.1) include the block Andersonmodel and theWegner

orbital model in their orthogonal and unitary versions, given by

block
Anderson

⎧⎨
⎩(H

bA,Rψ)(x) = VGOE(x)ψ(x)+ g
∑

y∼x(ψ(x)− ψ(y)),

(HbA,Cψ)(x) = VGUE(x)ψ(x)+ g
∑

y∼x(ψ(x)− ψ(y)),

Wegner
orbital

⎧⎨
⎩(H

Weg,Rψ)(x) = VGOE(x)ψ(x)+ g
∑

y∼x W
R(x,y)ψ(y),

(HWeg,Cψ)(x) = VGUE(x)ψ(x)+ g
∑

y∼x W
C(x,y)ψ(y),

(1.2)

whereWR(x,y) has independent real Gaussian NR(0, 1/N) entries,WC(x,y) has indepen-

dent complex GaussianNC(0, 1/N) entries, g > 0 is a coupling constant, and superscripts

indicate the symmetry class of the potential matrices. The block Anderson model is a

generalisation of the Anderson model [8] with Gaussian disorder (which is recovered

when N = 1), whereas the Wegner orbital model is invariant in distribution under local

gauge transformations, that is, conjugation by U of the form

(Uψ)(x) = U(x)ψ(x) , where U(x) ∈
⎧⎨
⎩ON , HWeg,R

UN , HWeg,C
, x ∈ Z

d .
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Our results pertain to three topics: localisation at strong disorder in arbitrary

dimension (Theorem1), estimates on the density of states (Wegner estimates, Theorem2),

and on the probabilities of multiple eigenvalues in a short interval (Minami estimates,

Theorem 3). The latter two results are proved in greater generality, for deformed block-

Gaussian matrices, and are also applicable to Gaussian band matrices. The common

theme is the strive for the sharp dependence on the number N of orbitals (internal

degrees of freedom). As an additional application, we improve the upper bound from

[36] on the localisation length of one-dimensional Gaussian band matrices (Theorem 4).

Strong disorder localisation.

The Anderson model in dimension d ≥ 3 is conjectured to exhibit a spectral phase tran-

sition between a localisation (insulator) regime and a delocalisation (conductor) regime.

In particular, there should exist a threshold g0(d) such that for g < g0(d) the spectrum

is pure point, whereas for g > g0(d) it has an absolutely continuous component. So far

only the localisation side of the transition has been established mathematically. Two

methods of proof are now available: the multi-scale analysis of Fröhlich and Spencer

[24] and the fractional moment method of Aizenman and Molchanov [3].

A phase transition similar to that of the Anderson model is conjectured to occur,

in dimension d ≥ 3, for the orbital models (1.2), with the threshold g0(d,N) depending

on the dimension and the number of orbitals. The first subject of the current article is

the dependence of the threshold g0(d,N) on the number of orbitals N . On the physical

level of rigour, this question was settled already in the original papers [30, 35, 42]. The

arguments provided there indicate that, for d ≥ 3,

g0(d,N) ∼
{
C(d)

√
N

}−1
as N → ∞ . (1.3)

Two heuristic arguments are discussed in Section 4.

Our first result, Theorem 1 below, is a mathematically rigorous confirmation to

one direction of (1.3), the localisation side. The result is stated for the generalmodel (1.1).

When specialised to the models (1.2), it asserts that, for g below the threshold (1.3), the

matrix elements of the resolvent decay exponentially in the distance from the diagonal.

The formal statement is in terms of finite-volume restrictions: denote by

P� : �2(Z
d → C

N) → �2(� → C
N)
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the coordinate projection to a finite volume � ⊂ Z
d and, for an operator H of the form

(1.1), let

H� := P�HP
∗
� (1.4)

be the restriction of H to �. Let ‖x−y‖1 be the graph distance between x,y ∈ Z
d, let ‖v‖

be the �2 norm of a vector v ∈ C
N and let ‖W‖op be the operator norm of a matrix W .

Theorem 1. There exists a constant C > 0 such that the following holds. Let 0 < s < 1,

let H be as in (1.1) in either the orthogonal case or the unitary case and suppose that

geff := sup
x,y

{
E‖W(x,y)‖sop

} 1
s <

{
1 − s

Cd

} 1
s 1√

N
. (1.5)

Then for any finite � ⊂ Z
d, x,y ∈ �, λ ∈ R, and v ∈ C

N :

E‖(H� − λ)−1(x,y)v‖s ≤ CNs/2

1 − s

(
Cd(geff

√
N)s

1 − s

)‖x−y‖1
‖v‖s . (1.6)

�

In the left-hand side of (1.6), we first take the matrix inverse, then extract an

N × N block, and then multiply by a vector, or formally:

(H� − λ)−1(x,y)v = P{x}(H� − λ)−1P∗
{y}v .

Also observe that the assumption (1.5) guarantees that Cd(geff
√
N)s

1−s < 1, and thus the right-

hand side of (1.6) indeed decays exponentially in ‖x − y‖1.

Remark 1.1. Theorem 1 applies to the models (1.2) and yields the conclusion (1.6),

where geff is replaced with g. For s = 1− log−1
(d+2), the assumption (1.5) is implied by

g <
{
Cd log(d+ 2)

√
N

}−1
(1.7)

(where the constant may differ from that of (1.5)). �

Remark 1.2. Methods have been developed to pass from decay estimates for the resol-

vent in finite volume to other signatures of Anderson localisation, in particular, pure

point spectrum and dynamical localisation in infinite volume. We refer in particu-

lar to the eigenfunction correlator method introduced by Aizenman [2]; see further [5,

Theorem A.1]. Such methods can also be applied in our setup. �
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The main feature of Theorem 1 is the dependence on the number of orbitals, N ,

which, for the models (1.2), is conjecturally sharp in dimension d ≥ 3. For comparison,

localisation for

g <
{
C(d)N3/2

}−1

follows from the general theorems pertaining to variants of the Anderson model (proved

either by the method of [24], or of [3]) and does not require the additional arguments of

the current article.

The asymptotics for growing d in (1.7) is the same as in the corresponding result

for the usual Anderson model; moreover, a heuristic analysis of resonances suggests

that d logd is the true order of growth of the threshold (cf. Abou-Chacra et al. [1, (6.17)–

(6.18)] and a recent rigorous result of Bapst [9] pertaining to the Anderson model on a

tree). Also, the arguments of [37] can be applied in the current context, to express the

constant C in terms of the connectivity constant of self-avoiding walk on Z
d.

Wegner estimates.

Next we discuss Wegner estimates for a class of models, which contains, in particular,

the models (1.1) and certain Gaussian band matrices. For a given Hermitian matrix H

and an interval I ⊂ R denote

N (H , I) = #{eigenvalues of H in I} .

Also denote by |I | the length of I .

Estimates on the density of states (cf. (1.11) and the subsequent remark below)

were first obtained, in the context of Schrödinger operators, by Wegner [43], who proved

the following:

Let H0 be a k×k Hermitianmatrix, and let H = H0+V,where V is a randomdiag-

onal matrix with entries independently sampled from a bounded probability density

p on R. Then

EN (H , I) ≤ ‖p‖∞ k |I | , I is an interval in R . (1.8)

The original motivation ofWegner was to rule out the divergence of the density of states

at the mobility edge. Since then, estimates on the mean number of eigenvalues in an

interval, commonly referred to as Wegner estimates, have found numerous applications

in themathematical study of random operators (where they allow to handle resonances).
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The original estimate (1.8) can be applied to the finite-volume restrictions of the

models (1.2), where it provides the sharp dependence on the volume and on the size of

the interval, but not on the number of orbitals. We prove a form of (1.8) tailored to the

models (1.2), with the sharp dependence on N . We formulate the result in a more general

form, which applies also to Gaussian band matrices.

For positive integers k,N1, . . . ,Nk, we consider a random square matrix of

dimension
∑k

j=1 Nj which has the form

H = H0 +
k⊕
j=1

V( j) = H0 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V(1) 0 0 · · · 0

0 V(2) 0 · · · 0

0 0 V(3) · · · 0

0 0 0 · · · V(k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.9)

in which H0 is deterministic and the matrices (V( j)) are random and independent, with

V( j) of size Nj × Nj. We assume that either the distribution of each V( j) is given by the

GOE, and that H0 is real symmetric (orthogonal case), or that the distribution of each

V( j) is given by the GUE and H0 is Hermitian (unitary case). We refer to matrices thus

defined as deformed block-Gaussian matrices.

Theorem 2. There exists a constant C > 0 such that the following holds. Let H be a

deformed block-Gaussian matrix as in (1.9), in either the orthogonal case or the unitary

case. Then, for any interval I ⊂ R,

EN (H , I) ≤ C
k∑
j=1

Nj |I | . (1.10)

�

The unitary case of Theorem 2 was also recently proved by Pchelin [34]. Pchelin relies

on a single-block estimate (k = 1, cf. Proposition 2.1 and (2.2) below) which he proves in

the unitary case. Possibly, his argument can rely additionally on the orthogonal case of

the single-block estimate, as proved in [4], and yield an alternative proof of Theorem 2

in full generality.

Our proofs of Theorem 2 and Theorem 3 below rely on a representation formula

for N (H , I) in terms of similar quantities for single blocks. This formula, presented in

Proposition 2.4 (see also Remark 2.5), may possibly be of use elsewhere.

One can obtain complementary bounds to Theorem 2; see Section 4.
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Application # 1: orbital model. Going back to the orbital operators (1.1), the theorem

applies to the restriction of each of them to a finite volume. For integers L ≥ 0 and d ≥ 1

we write

�d
L := {−L,−L+ 1, . . . ,L}d.

Corollary 1.3. There exists a constant C > 0 such that the following holds. Let H be as

in (1.1) in either the orthogonal case or the unitary case, and let H� be the restriction of

H to a finite volume � ⊂ Z
d as in (1.4). Then

EN (H�, I) ≤ CN |�||I |

for any interval I ⊂ R. In particular, if the limiting measure

ρH (·) = lim
L→∞

E N (H
�dL

, ·)
N(2L+ 1)d

(1.11)

exists, then it has a density (called the density of states ofH ) which is bounded uniformly

in N . �

We remark that according to general results pertaining to metrically transitive

[= ergodic] operators, see Pastur and Figotin [32] or Aizenman and Warzel [6], the lim-

iting measure in (1.11) exists for the models (1.2) and, more generally, whenever the

distribution of the hopping terms W(x,y) depends only on x − y.

Proof of Corollary 1.3. Condition on the hopping terms W(x,y) and apply Theorem 2

with k = |�| and all Nj equal to N . �

Let us briefly discuss related previous results. Constantinescu et al. [15] derived an

integral representation of the density of states for a class of locally gauge-invariant

operators including HWeg. Using this representation, they proved, for a specific model

slightly outside the class (1.1), that the density of states is analytic, uniformly in N , in

a certain range of parameters. In the case of d = 1, further results pertaining to the

density of states were obtained by Constantinescu [14] using supersymmetric transfer

matrices.

The integrated density of states (the cumulative distribution function of the

measure ρH from (1.11)) was studied by Khorunzhiy and Pastur [27], who established,
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for a wide class of orbital models, an asymptotic expansion in inverse powers of N ; see

further Pastur [31] and the book [33, Section 17.3] of Pastur and Shcherbina.

Application # 2: Gaussian band matrices. We proceed to define a class of Gaussian

random matrices to which the results can be applied, and which contains the class

of Gaussian band matrices. We say that a random variable is complex Gaussian if its

real and imaginary parts are independent real Gaussian random variables with equal

variance.

Definition 1.4. Let L ≥ 0,d ≥ 1 be integers and letψ : Z
d → [0,∞) satisfyψ(−r) = ψ(r).

A Gaussian random matrix HL with domain �d
L and shape function ψ is an Hermitian

(2L+1)d×(2L+1)d randommatrix, whose rows and columns are indexed by the elements

of �d
L , having the form

HL = XL + X ∗
L√

2
,

where the entries of thematrixXL are either independent real Gaussian (orthogonal case)

or independent complex Gaussian (unitary case), having zero mean and satisfying

E|XL(x,y)|2 = ψ(x − y), x,y ∈ �d
L . �

We remark that an equivalent way to specify the covariance structure of HL in

the above definition is via the formula

EHL(x,y)HL(x ′,y ′) = ψ(x − y)×
⎧⎨
⎩1x=x′,y=y′ + 1x=y′,y=x′ , orthogonal case

1x=x′,y=y′ , unitary case .
(1.12)

Remark 1.5. We note for later use that, in our normalisation, an N × N random GOE

(GUE) matrix has the same distribution as X+X∗√
2N

where the entries of the matrix X are

independent real (complex) Gaussian with zero mean and with E|X(x,y)|2 = 1 for all

x,y. �

Theorem 2 implies a Wegner estimate for the Gaussian random matrices thus

defined. We write ‖v‖∞ for the �∞ norm of a vector v.

Corollary 1.6. There exists a constant C > 0 such that the following holds. Let HL be a

Gaussian randommatrix with domain �d
L and shape function ψ in either the orthogonal
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case or the unitary case. Suppose that

ψ(r) ≥ 1

(W + 1)d
when ‖r‖∞ ≤ 2min(W ,L) (1.13)

for some integer W satisfying 0 ≤ W ≤ 2L. Then for any interval I ⊂ R,

EN (HL, I) ≤ C(2L+ 1)d|I | . (1.14)

In particular, assuming (1.13) holds for some integer W ≥ 0, the measure

ρ(·) = lim
L→∞

EN (HL, ·)
(2L+ 1)d

has a density, the density of states, which is uniformly bounded by C. �

The corollary is particularly interesting in the case whenW is a large parameter,

L � W , and ψ(r) is small for ‖r‖∞ � W ; in this case HL is informally called a Gaussian

band matrix of bandwidthW . One way to construct such matrices is to choose, slightly

modifying the definition used by Erdős and Knowles [22], the shape function ψ of the

form

ψ(r) = φ( r
W )

Wd
, r ∈ Z

d (1.15)

for an almost everywhere continuous function φ : R
d → [0,∞) satisfying φ(−r) = φ(r)

and 0 <
∫
φ(r)dr < ∞. If HL is constructed in this way, and if

φ(ρ) ≥ δ for ‖ρ‖∞ ≤ ε (1.16)

with some 0 < ε ≤ 4L
W and δ > 0, then, for any interval I ⊂ R,

EN (HL, I) ≤ K (2L+ 1)d|I | , (1.17)

where K = C
√

1
δ

(
2
ε

)d
. This follows from Corollary 1.6 applied to the matrix

√
1
δ

(
2
ε

)d
HL

with � εW2 � in place of W .

Another example of Gaussian band matrices, in which Corollary 1.6 can be

applied to deduce (1.17) with a constant K independent of W , is given by

EHL(x,y)HL(x ′,y ′)

= (−W2
+ 1)−1(x,y)×
⎧⎨
⎩1x=x′,y=y′ + 1x=y′,y=x′ , orthogonal case

1x=x′,y=y′ , unitary case ,

(1.18)
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where 
 is the discrete Laplacian on Z
d, d ≥ 1.

This example was studied by Disertori, Pinson, and Spencer [18], who proved

an estimate of the form (1.17) for the unitary case in dimension d = 3. Very recently, a

parallel result for d = 1 was proved by M. and T. Shcherbina [38], and for d = 2 — by

Disertori and Lager [17].

To the best of our knowledge, these are the only previously known estimates

of the form (1.17) for any kind of band matrices which are valid for arbitrarily short

intervals I uniformly in W ; see further [40, Section 3] for a discussion of the problem.

We remark that the methods of [17, 18] and [38] allow to go beyond a uniform bound on

the density of states, and provide a differentiable asymptotic expansion for it in powers

ofW−2. On the other hand, these methods make essential use of the particular structure

(1.18).

In a generality similar to that of Definition 1.4, Bogachev et al. [10] and Khorun-

zhiy et al. [26] found the limit of N (HL, I)/(2L+ 1)d (with or without the expectation) for

a fixed interval I as W ,L → ∞; this limit is bounded by a constant times the length of

I . The results of Erdős et al. [23] (and, in a slightly different setting, of [39]) yield an

estimate of the form (1.17) for intervals I of length |I | ≥ W−1+ε .

Proof of Corollary 1.6. Using the assumption that 0 ≤ W ≤ 2L we may partition

{−L,−L + 1, . . . ,L} into disjoint discrete intervals Ij, 1 ≤ j ≤ �, satisfying W + 1 ≤ |Ij| ≤
2W + 1 for all j (if W ≥ L then the partition necessarily has � = 1 and |I1| = 2L + 1).

Correspondingly, write

�d
L =

�d⊎
j=1

Bj (1.19)

where the Bj are all Cartesian products of the form J1 × J2 × · · · × Jd where each Ji is one

of the intervals Ij.

Now consider the matrix HL as a block matrix, where the partition of the index

set �d
L into blocks is given by (1.19). The assumption (1.13), the fact that the entries of

HL are Gaussian and the observation in Remark 1.5 allow us to write

HL = H0
L + VL (1.20)

where VL is a block-diagonal matrix, with the diagonal blocks distributed as GOE in the

orthogonal case and as GUE in the unitary case, and where H0
L is an Hermitian matrix,

independent of VL, with jointly Gaussian entries which are real in the orthogonal case.
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Thus, conditioning onH0
L , the estimate (1.14) follows fromTheorem 2 appliedwith k = �d

and Nj = |Bj|. �

Minami estimates.

In the same setting as (1.8), Minami established [29] the bound:

EN (H , I)(N (H , I)− 1) ≤ (C‖p‖∞|�| |I |)2 . (1.21)

The bound (1.21) rules out attraction between eigenvalues in the local regime; it is a

key step in Minami’s proof of Poisson statistics for the Anderson model in the regime

of Anderson localisation. Subsequently, additional proofs and generalisations of (1.21)

were found, among which we mention the argument of Combes et al. [13].

The next result is a counterpart of (1.21) in our block setting. As in Theorem 2,

the central feature is the dependence on the sizes of the blocks.

Theorem 3. There exists C > 0 such that the following holds. Let H be a deformed

block-Gaussian matrix as in (1.9), in either the orthogonal case or the unitary case.

Then, for any integer m ≥ 1 and interval I ⊂ R,

E

m−1∏
�=0

(N (H , I)− �) ≤
⎛
⎝C k∑

j=1

Nj |I |
⎞
⎠

m

, (1.22)

and, consequently,

P {N (H , I) ≥ m} ≤ 1

m!

⎛
⎝C k∑

j=1

Nj |I |
⎞
⎠

m

. �

The case m = 1 in the theorem is the Wegner estimate discussed in Theorem 2

whereas the cases m ≥ 2 are Minami-type estimates.

Localisation for one-dimensional band matrices.

Band matrices in one dimension (d = 1) have been studied extensively in the physics

literature as a simple model in which the quantum dynamics exhibits crossover from

quantum diffusion to localisation, see [11, 12, 25]. Based on those works, the follow-

ing crossover is expected: considering band matrices of dimension L and bandwidth

W , when W � √
L, each eigenvector has appreciable overlap with a vanishingly small
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fraction of the standard basis vectors in the large L limit, whereas for W � √
L a typi-

cal eigenvector has overlap of order 1/
√
L with most standard basis vectors. A related

conjecture states that the i, j-entry of the resolvent should decay as exp(−C|i − j|W−2)

for W � √
L.

In [36], one of us studied the localisation side of this problem. In that paper it

was shown that certain ensembles of random matrices whose entries vanish outside a

band ofwidthW around the diagonal satisfy a localisation condition in the limit that the

size of the matrix L tends to infinity such that W8/L → 0. For Gaussian band matrices,

our present work settles [36, Problem 2] in the positive, thereby allowing to improve the

result there slightly by replacing the exponent 8 with the exponent 7 (which is still a bit

away from the expected optimal exponent 2).

Theorem 4. Let HL be a Gaussian random matrix with domain �L = {−L,−L+ 1, . . . ,L}
and shape function ψ as in Definition 1.4 in either the orthogonal case or the uni-

tary case. Let W be an integer dividing 2L + 1 and suppose that ψ is the sharp cutoff

function

ψ(r) =
⎧⎨
⎩

1
W |x| <W

0 |x| ≥ W
. (1.23)

Then, given ρ > 0 and s ∈ (0, 1) there are A < ∞ and α > 0 such that

E
(∣∣(HL − λ)−1(i, j)

∣∣s) ≤ AW
s
2 e−α |i−j|

W7 (1.24)

for all λ ∈ [−ρ, ρ] and all i, j ∈ {−L, . . . ,L}. �

Remark 1.7. The theorem implies (using the resolvent identity) that a similar estimate

holds without the assumption 2L+ 1 ≡ 0 mod W . �

2 Proof of the Theorems

In this section, we prove the main results of the article. We use the following result

from [4], where the object of study was the regularizing effect of adding a Gaussian ran-

dom matrix to a given deterministic matrix. The GUE case of (2.2) was also proved by

Pchelin [34].
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Proposition 2.1. [4, Theorem 1 and Remark 2.2]

If either: A is an N × N real symmetric matrix, v ∈ R
N , and V is sampled from GOE,

or: A is an N × N Hermitian matrix, v ∈ C
N , and V is sampled from GUE,

then the matrix A+ V satisfies the bounds:

P

{
‖(A+ V)−1v‖ ≥ t

√
N‖v‖

}
≤ C

t
, t ≥ 1, (2.1)

E N (A+ V , I) ≤ CN |I | , I is an interval in R (2.2)

with a constant C < ∞ which is uniform inN ,A, and v. Moreover, the following stronger

version of (2.1) holds: almost surely,

P

{
‖(A+ V)−1v‖ ≥ t

√
N‖v‖

∣∣∣ P̂v⊥VP̂∗
v⊥

}
≤ C

t
, t ≥ 1 , (2.3)

where P̂v⊥ : C
N → C

N/Cv � v⊥ is the canonical projection, and v⊥ is the orthogonal

complement to v. �

In the setting of Proposition 2.1 we note the following consequence of (2.1),

E‖(A+ V)−1v‖s ≤ C0N
s
2

1 − s
‖v‖s , 0 < s < 1 , (2.4)

where C0 is an absolute constant (uniform in all the parameters of the problem).

Remark 2.2. Our proofs of Theorem 1 (localisation), Theorem 2 (Wegner-type estimate)

and Theorem 3 (Minami-type estimate) rely on the Gaussian structure of the underlying

random matrix ensembles only through Proposition 2.1 (and the simple observation of

Remark 2.3 below). Thus, if an extension of the proposition to other random matrix

ensembles is found, corresponding extensions of our theorems will follow. �

Remark 2.3. For the random matrix models discussed in our theorems, any given λ ∈
R is almost surely not an eigenvalue. This follows, for instance, from the following

observation: if H is a random matrix satisfying that for any μ ∈ R, the distribution of H

and the distribution of H − μ are mutually absolutely continuous then any given λ ∈ R

is almost surely not an eigenvalue of H . �

Proof of Theorem 1. Denote by Gλ[H̃ ] = (H̃ − λ)−1 the resolvent of an operator H̃ . For

x̃ ∈ �̃ ⊂ �, let F�̃,x̃ be the σ -algebra generated by all H�̃(w,w ′), where w,w ′ ∈ �̃ and

(w,w ′) �= (x̃, x̃).
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Observe the following corollary of the Schur–Banachiewicz formula for block

matrix inversion: for any x̃ ∈ �̃ ⊂ �,

Gλ[H�̃](x̃, x̃) = (V(x̃)− λ−
)−1 , (2.5)

where 
 is measurable with respect to F�̃,x̃ . Consequently, by (2.4), almost surely,

E
[∥∥Gλ[H�̃](x̃, x̃)ṽ∥∥s | F�̃,x̃

] ≤ C0N
s
2

1 − s
E‖ṽ‖s (2.6)

whenever ṽ is a random vector which is measurable with respect to F�̃,x̃ .

Next, we use the following representation of Gλ[H�](x,y):

Gλ[H�](x,y) =
∑

k≥‖x−y‖1
(−1)k

∑
π∈�k(x,y)

Gλ[H�](π0,π0)W(π0,π1)Gλ[H�\{π0}](π1,π1)

W(π1,π2)Gλ[H�\{π0,π1}](π2,π2) · · ·W(πk−1,πk)Gλ[H�\{π0,π1,··· ,πk−1}](πk,πk) ,
(2.7)

where for y = x the right-hand side is interpreted as Gλ[H�](x,x), and for y �= x the

collection �k(x,y) includes all tuples of pairwise distinct vertices π0,π1, · · · ,πk ∈ �

such that x = π0 ∼ π1 ∼ π2 · · · ∼ πk = y.

Indeed, the representation is tautological for y = x, and for y �= x it follows by

iterating the equality

Gλ[H�](x,y) = −
∑
π1∼x

Gλ[H�](x,x)W(x,π1)Gλ[H�\{x}](π1,y) .

The latter is in turn a corollary of the second resolvent identity applied to the operators

H� − λ and Hx
� − λ, where Hx

� is obtained from H� by setting the blocks W(x,x ′) and

W(x ′,x) to 0 for all x ′ ∼ x.

Now we turn to the proof of the theorem. We derive from (2.7) using the triangle

inequality and |a+ b|s ≤ |a|s + |b|s that

‖Gλ[H�](x,y)v‖s ≤
∑

k≥‖x−y‖1

∑
π∈�k(x,y)

∥∥∥Gλ[H�](π0,π0)W(π0,π1)Gλ[H�\{π0}](π1,π1)

W(π1,π2)Gλ[H�\{π0,π1}](π2,π2) · · ·W(πk−1,πk)Gλ[H�\{π0,π1,··· ,πk−1}](πk,πk)v
∥∥∥s .

(2.8)

To bound the expectation of a term in (2.8), we repeatedly use (2.6) and the inequality

E‖W(x̃, x̃ ′)‖sop ≤ gseff (2.9)
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from (1.5). We obtain for the term in (2.8) corresponding to a single π ∈ �k(x,y):

E
∥∥Gλ[H�](π0,π0)W(π0,π1) · · ·Gλ[H�\{π0,π1,··· ,πk−1}](πk,πk)v

∥∥s ≤
(
C0N

s
2

1 − s

)k+1

gskeff ‖v‖s .

The cardinality of �k(x,y) does not exceed (2d)k. Therefore

E‖Gλ[H�](x,y)v‖s ≤
∑

k≥‖x−y‖1

(
C0N

s
2

1 − s

)k+1 (
2dgseff

)k ‖v‖s

≤ 2

(
C0N

s
2

1 − s

)‖x−y‖1+1 (
2dgseff

)‖x−y‖1 ‖v‖s

whenever

4C0dgseffN
s
2

1 − s
≤ 1 .

This is what is claimed in the statement of the theorem, for C = 4C0. �

The proofs of Theorems 2 and 3 are preceded by the following proposition, the purpose of

which is to write N (H , I) as a linear expression involving terms of the form N (V +A, J),

where V is a random matrix sampled from the GOE (or GUE), A is a symmetric (or

Hermitian) matrix independent of V and J is an interval in R.

Proposition 2.4. Let H have the form H = H0 + ⊕k
j=1V( j) (as in (1.9)) in which H0 and

all V( j) are (deterministic) Hermitian matrices. Then for any interval I the endpoints of

which are not eigenvalues of H ,

N (H , I) = lim
η→+0

k∑
j=1

∫
I

dλ

π

∫ ∞

−∞

dt

π(1 + t2)

∫ ∞

0

2ηξ dξ

(ξ 2 + η2)2
N

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)
,

whereA( j, λ, η, t) is anHermitianmatrix determined byH0 and (V(�))��=j (i.e., everymatrix

element ofA is a Borel-measurable function of these variables and λ, η and t). In addition,

if H0 and all V( j) are real, then the matrices A are real as well. �

The exact definition of the matrices A( j, λ, η, t) is given in (3.1) and (3.2).

Remark 2.5. Each of the integrals

∫
I

dλ

|I | ,
∫ ∞

−∞

dt

π(1 + t2)
,

∫ ∞

0

4ηξ 2 dξ

π(ξ 2 + η2)2
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equals one. This leads us to introduce the following notation:

Aveηλ,t,ξ �(λ, t, ξ ; η) =
∫
I

dλ

|I |
∫ ∞

−∞

dt

π(1 + t2)

∫ ∞

0

4ηξ 2 dξ

π(ξ 2 + η2)2
�(λ, t, ξ ; η) .

With this notation and assuming 0 < |I | < ∞, the conclusion of Proposition 2.4 takes

the form:

1

|I |N (H , I) = lim
η→+0

k∑
j=1

Aveηλ,t,ξ
1

2ξ
N

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)
. (2.10)

�

We prove Theorems 2 and 3 using Proposition 2.4, and defer the proof of the

proposition to the next section.

Proof of Theorem 2. In the setting of the theorem, the end points of any fixed interval

I are almost surely not eigenvalues of H (see Remark 2.3). Therefore Proposition 2.4 is

applicable almost surely, and (2.10) yields:

1

|I |EN (H , I) = E lim
η→+0

k∑
j=1

Aveηλ,t,ξ
1

2ξ
N

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)

≤ lim
η→+0

k∑
j=1

Aveηλ,t,ξ
1

2ξ
EN

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)

≤ lim
η→+0

k∑
j=1

Aveηλ,t,ξ CNj = C
k∑
j=1

Nj .

The first inequality follows from the Fatou lemma and the second one is an application

of the single-block bound (2.2) with |I | = 2ξ . �

The proof of Theorem 3 also uses formula (2.10) as a starting point, and proceeds

following arguments similar to those used in the proof of [4, Theorem 2] (which is the

k = 1 case of Theorem 3); these arguments are, in turn, inspired by the work of Combes

et al. [13]. We start with the following simple lemma (see e.g., [4, Lemma 3.1 and (3.6)] for

a slightly stronger version featuring the Frobenius norm in place of the operator norm).

Lemma 2.6. Let A be an N × N deterministic Hermitian matrix.

If either: v is uniformly distributed on the sphere S
N−1
R

= {w ∈ R
N : ‖w‖ = 1}

and A is real,

or: v is uniformly distributed on the sphere S
N−1
C

= {w ∈ C
N : ‖w‖ = 1},
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then

P

{
‖Av‖ ≤ ε√

N
‖A‖op

}
≤ 5ε, ε > 0. �

Consequently, in the same setting, for any non-negative random variable X

which is independent of v,

EX ≤ 2E

[
X · 1

{
‖A−1v‖ ≥ ‖A−1‖op

10
√
N

}]
, (2.11)

where 1{�} is the indicator of an event �.

Proof of Theorem 3. It suffices to prove the theorem for intervals I of length 0 < |I | <
∞, therefore we tacitly impose this assumption on all intervals which appear in this

proof. The argument is by induction on m. Let C1 = 10C, where C is the greater among

the constants in Theorem 2 and Proposition 2.1. Fix an interval I and the numbers Nj;

let m ≥ 2, and assume, as the induction hypothesis, that

E

m−2∏
�=0

(N (H , I)− �) ≤
⎛
⎝C1

k∑
j=1

Nj |I |
⎞
⎠

m−1

, (2.12)

for any deformed block-Gaussian randommatrix H of the form (1.9) in either the orthog-

onal case or the unitary case. Note that the induction base, (2.12) with m = 2, follows

from Theorem 2.

Let H be a random matrix of the form (1.9) in either the orthogonal case or the

unitary case. The formula (2.10) applied to N (H , I) shows that

m−1∏
�=0

(N (H , I)− �) = |I | lim
η→+0

k∑
j=1

Aveηλ,t,ξ
1

2ξ
N

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)m−1∏
�=1

(N (H , I)− �) .

Thus, by the Fatou lemma, it suffices to prove that for any 1 ≤ j ≤ k, λ, t ∈ R and ξ , η > 0,

E N
(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)m−1∏
�=1

(N (H , I)− �)+ ≤ 2ξ · C1Nj

(
C1

k∑
i=1

Ni |I |
)m−1

. (2.13)

The eigenvalues of V( j) + A( j, λ, η, t) are simple almost surely, since the distribution

of V( j) + A( j, λ, η, t) is absolutely continuous with respect to the Lebesgue measure on

real symmetric matrices (orthogonal case) or Hermitianmatrices (unitary case). For each
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naturalM , construct a partition {InM }2Mn=1 of (−ξ , ξ) into 2M intervals of equal length. Then,

almost surely,

N
(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

)
= lim

M→∞

2M∑
n=1

1
{
N

(
V( j)+ A( j, λ, η, t), InM

)
≥ 1

}

= lim
M→∞

2M∑
n=1

1

{
‖(V( j)+ A( j, λ, η, t)− M(InM ))

−1‖op ≥ 2

|InM |
}
,

where we denoted by M(J) the mid-point of an interval J ⊂ R. This relation, com-

bined with the monotone convergence theorem (as the partitions are refining when M

increases), reduces the desired (2.13) to the following claim: for any interval J ,

E 1

{
‖B−1

j,J ‖op ≥ 2

|J |
}m−1∏

�=1

(N (H , I)− �)+ ≤ |J | · C1Nj

(
C1

k∑
i=1

Ni |I |
)m−1

, (2.14)

where we denoted

Bj,J := V( j)+ A( j, λ, η, t)− M(J) .

Now let v be a random vector, independent of H , which is uniformly distributed on the

sphere S
Nj−1

R
in the orthogonal case or uniformly distributed on the complex sphere S

Nj−1

C

in the unitary case. By first conditioning on H , inequality (2.11) may be applied to show

that

E 1

{
‖B−1

j,J ‖op ≥ 2

|J |
}m−1∏

�=1

(N (H , I)− �)+

≤ 2E

[
1

{
‖B−1

j,J ‖op ≥ 2

|J |
}m−1∏

�=1

(N (H , I)− �)+ · 1

{
‖B−1

j,J v‖ ≥ ‖B−1
j,J ‖op

10
√
Nj

}]

≤ 2E

[
1

{
‖B−1

j,J v‖ ≥ 1

5
√
Nj|J |

}
m−1∏
�=1

(N (H , I)− �)+

]
.

(2.15)

Denote by Pj : R
∑
i Ni → R

Nj the coordinate projection to the space corresponding to V( j),

and, for τ ∈ R, define the rank-one perturbation

Hv,τ = H + τP∗
j vv

∗Pj .
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The eigenvalues of H and Hv,τ interlace, therefore

m−1∏
�=1

(N (H , I)− �)+ ≤ P := lim
τ→+∞

m−2∏
�=0

(N (Hv,τ , I)− �) (2.16)

(the inequality actually holds for any fixed τ ). In view of (2.15), our goal (2.14) is reduced

to the inequality

2E

[
1

{
‖B−1

j,J v‖ ≥ 1

5
√
Nj|J |

}
P

]
≤ |J | · C1Nj

(
C1

k∑
i=1

Ni |I |
)m−1

, (2.17)

which we now prove.

The following simple fact is central to the argument. For an Hermitian matrix

K of dimension r and unit vector u ∈ C
r , define a matrix Ku of dimension r − 1 by

Ku = P̂u⊥KuP̂∗
u⊥ , where P̂u⊥ : C

r → C
r/Cu is the canonical projection (e.g., if u is the first

vector of the standard basis, Ku is the submatrix obtained by removing the first row and

column of Ku). Then

lim
τ→∞ N (K + τuu∗, I) = N (Ku, I)

for any interval I whose endpoints are not eigenvalues of Ku. We apply this identity

with K = H and u = P∗
j v, and deduce that the random variable lim

τ→+∞ N (Hv,τ , I) is mea-

surable with respect to P̂(P∗
j v)

⊥HP̂∗
(P∗
j v)

⊥ . Thus, the “moreover” part of Proposition 2.1 can

be applied, yielding

2E

[
1

{
‖B−1

j,J v‖ ≥ 1

5
√
Nj|J |

}
P

]

= 2E

(
P · P

[
‖B−1

j,J v‖ ≥ 1

5
√
Nj|J |

∣∣∣ P̂(P∗
j v)

⊥HP̂∗
(P∗
j v)

⊥

])
≤ C1Nj|J |EP

(2.18)

with C1 = 10C. Now note that each of the matrices Hv,τ , conditioned on v, has the form

(1.9) in the orthogonal or unitary case (corresponding to the case of H ). Thus we may

apply the Fatou lemma and the induction hypothesis (2.12) to conclude that

EP ≤ lim
τ→∞ E

m−2∏
�=0

(N (Hv,τ , I)− �) ≤
(
C1

k∑
i=1

Ni |I |
)m−1

. (2.19)

The combination of (2.18) with (2.19) concludes the proof of (2.17) and of the theorem. �
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Proof of Theorem 4. We consider in parallel the cases of orthogonal and unitary

symmetry. First, the matrix HL is of the form

HL =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V1 T1 0 · · · · · · · · · 0

T∗
1 V2 T2 0 · · · · · · 0

0 T∗
2 V3

. . .
. . .

...
... 0

. . .
. . .

. . .
. . .

...
...

...
. . .

. . .
. . .

. . . 0
...

...
. . .

. . .
. . . Tk−1

0 0 · · · · · · 0 T∗
k−1 Vk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with Vj, j = 1, . . . ,k, being W × W matrices drawn from the GOE (GUE) and Tj, j =
1, . . . ,k − 1, being lower triangular real (complex) Gaussian matrices. The individual

matrices are identically distributed within each family and stochastically independent

(within each family and between the families). The matrix dimension is 2L + 1 = kW .

Therefore, we are in the setting of [36, Section 3].

For the rest of the proof, we fix an arbitrary t ∈ (s, 1) (its value only affects the

constants in the estimates). According to [36, Theorem 6], there exist C,μ > 0 such that

for any i, j ∈ {−L,−L+ 1, . . . ,L},

E
(∣∣(HL − λ)−1(i, j)

∣∣s) ≤ CM(W , t)
s
t e−μW−2ν−1|i−j|, (2.20)

where

M(W , t) = max
−L≤i,j≤L

E

(∣∣(HL − λ)−1(i, j)
∣∣t) ,

and

ν ≥ max(2, ζ + max(a, 1 + σ + 2b))

with ζ , a, σ and b certain exponents related to the distribution of the blocks of HL. We

refer to [36] for the definition and discussion of the exponents ζ , a and b. As explained

in [36, Section 5], for the Gaussian matrices considered here we can take ζ = 2, a = 0

and b = 0.

The key improvement afforded in the present work comes from the exponent

σ , which is related to the Wegner estimate, namely σ is such that for any R > 1, real
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symmetric (Hermitian)W×W matrices A,B and a real (complex) arbitraryW×W matrix

D,

P
{∥∥(V − A)−1

∥∥ > RW1+σ} ≤ κ
1

R

and

P

⎧⎨
⎩

∥∥∥∥∥∥
(

V − A D

D∗ V ′ − B

)−1
∥∥∥∥∥∥ > RW1+σ

⎫⎬
⎭ ≤ 2κ

1

R
,

where V ,V ′ are independent W ×W random matrices with the GOE (GUE) distribution.

Theorem 2, applied with one or two diagonal blocks (k = 1, 2), ensures that these esti-

mates hold with σ = 0 (in the single block case it suffices to use the result of [4] stated

here as Proposition 2.1). According to a Wegner-type estimate of [3, Theorem II.1],

M(W , t) ≤ CtW
t
2 .

Plugging this estimate into (2.20) with σ = 0, we obtain the claim. �

3 Proof of Proposition 2.4

We start with a preparatory lemma which is a consequence of the Poisson integral

formula.

Lemma 3.1. Let X ,Y be Hermitian matrices such that Y is negative semi-definite, and

let η > 0. Then

� tr(X + iY − iη)−1 =
∫ ∞

−∞

dt

π(1 + t2)
� tr(X + tY − iη)−1. �

Proof. Consider the function

φ(ξ) = tr(X + ξY − iη)−1 , ξ ∈ C , �ξ ≥ 0 .

Observe that, for ξ as above and any non-zero vector ψ ∈ C
N ,

�〈(X + ξY − iη)ψ ,ψ〉 ≤ −η‖ψ‖2 < 0

(where N is the common dimension of X and Y , and 〈·, ·〉 is the scalar product on C
N ,

linear in the first component and anti-linear in the second one). By an elementary linear-

algebreaic argument, φ is holomorphic in its domain of definition and, in particular,
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�φ is harmonic. Also,

�φ(ξ) = 1

2i
tr

{
(X + ξY − iη)−1 − (X + ξ̄Y + iη)−1

}

is positive, and

lim sup
y→+∞

�φ(iy) ≤ sup
y>0

�φ(iy) ≤ Nη−1 < ∞ ,

since ‖(X+ iyY− iη)−1‖op ≤ 1
η
. Therefore (see e.g., [28, Chapter 14]) �φ admits the Poisson

representation

�φ(i) =
∫ +∞

−∞

�φ(t)dt
π(1 + t2)

=
∫ +∞

−∞

dt

π(1 + t2)
�tr(X + tY − iη)−1. �

We proceed with the proof of Proposition 2.4. Let H have the form H = H0 +
⊕k

j=1V( j) (as in (1.9)) in which H0 and all V( j) are (deterministic) Hermitian matrices and

suppose that V( j) is of size Nj ×Nj. Denote by Pj : R
∑
i Ni → R

Nj the coordinate projection

to the space corresponding to V( j); also denote by Qj : R
∑
i Ni → R

∑
i �=j Ni the coordinate

projection to the orthogonal subspace to the range of Pj. Let

A( j) = PjH0P
∗
j , B( j) = QjHP

∗
j , C( j) = QjHQ

∗
j (3.1)

(note that A( j) is defined with H0 rather than H ) and define, for λ, t ∈ R and η > 0,

A( j, λ, η, t) = −λ+ A( j)− B( j)∗(C( j)− λ+ tη)((C( j)− λ)2 + η2)−1B( j) . (3.2)

The Perron–Stieltjes inversion formula [7, Addenda to Chapter III], using our

assumption that the endpoints of I are not eigenvalues of H , implies that

N (H , I) = lim
η→+0

∫
I

dλ

π
� tr(H − λ− iη)−1 . (3.3)

Now, for any λ ∈ R and η > 0 the integrand may be rewritten using the Schur–

Banachiewicz inversion formula,

tr(H − λ− iη)−1 =
k∑
j=1

tr Pj(H − λ− iη)−1P∗
j

=
k∑
j=1

tr
(
V( j)− λ− iη + A( j)− B( j)∗(C( j)− λ− iη)−1B( j)

)−1
.
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This expression, in turn, may be rewritten as follows. Denoting, for each 1 ≤ j ≤ k,

Z( j) = −λ+ A( j)− B( j)∗(C( j)− λ− iη)−1B( j) ,

we may define the Hermitian matrices

X( j) = Z( j)+ Z( j)∗

2
= −λ+ A( j)− B( j)∗(C( j)− λ)((C( j)− λ)2 + η2)−1B( j) ,

Y( j) = Z( j)− Z( j)∗

2i
= −ηB( j)∗((C( j)− λ)2 + η2)−1B( j)

and conclude that

tr(H − λ− iη)−1 =
k∑
j=1

tr(V( j)+ X( j)+ iY( j)− iη)−1 .

The matrix Y( j) is explicitly negative semi-definite, therefore Lemma 3.1 implies that

� tr(H − λ− iη)−1 =
k∑
j=1

∫ ∞

−∞

dt

π(1 + t2)
� tr(V( j)+ X( j)+ tY( j)− iη)−1

=
k∑
j=1

∫ ∞

−∞

dt

π(1 + t2)
� tr(V( j)+ A( j, λ, η, t)− iη)−1 .

Plugging this equality into (3.3) shows that

N (H , I) = lim
η→+0

k∑
j=1

∫
I

dλ

π

∫ ∞

−∞

dt

π(1 + t2)
� tr(V( j)+ A( j, λ, η, t)− iη)−1 . (3.4)

To conclude the proof of the proposition, we use the following form of the spectral

theorem:

tr f (V( j)+ A( j, λ, η, t)) =
∫ ∞

−∞
f (ξ)dN (V( j)+ A( j, λ, η, t), (−∞, ξ)) ,

where the (Stieltjes) integral is with respect to the ξ variable, and N (V( j) +
A( j, λ, η, t), (a,b)) denotes the number of eigenvalues of V( j)+A( j, λ, η, t) in the interval

(a,b). Plugging in the even function f (ξ) = �(ξ − iη)−1 = η/(ξ 2 + η2), we obtain that

� tr(V( j)+ A( j, λ, η, t)− iη)−1 =
∫ ∞

0

η

ξ 2 + η2
dN (V( j)+ A( j, λ, η, t), (−ξ , ξ)) ,
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Integrating by parts, we have:

∫ ∞

0
dN (V( j)+ A( j, λ, η, t), (−ξ , ξ)) η

ξ 2 + η2
=

∫ ∞

0
N

(
V( j)+ A( j, λ, η, t), (−ξ , ξ)

) 2ηξ dξ

(ξ 2 + η2)2
.

The last two displayed equations together with (3.4) establish the proposition.

4 Concluding Remarks

Second-order perturbation theory.

One heuristic explanation for the scaling (1.3) is provided by second-order perturbation

theory. We sketch the argument for HbA; similar considerations apply to the Wegner

N-orbital operator HWeg.

At g = 0, the coupling between blocks is completely suppressed; and the opera-

tor has pure point spectrum, with eigenvalues given by the union of the spectrum of the

individual matrices V(x), x ∈ Z
d. Let λj(x), j = 1, . . . ,N , denote the eigenvalues associ-

ated to the matrix V(x), with corresponding eigenvectors vj(x), j = 1, . . . ,N , in C
N . Then,

for every x, the distribution of the eigenvalues is approximately given byWigner’s semi-

circle density (2π)−1
√
(4 − λ2)+, and the gaps between the eigenvalues (for fixed x) are

typically of order N−1.

For positive g = a√
N
, second-order perturbation theory predicts that the

eigenvalues λj(x) shift by a quantity close to

a2

N

∑
y∼x

N∑
k=1

∣∣〈vk(y),vj(x)〉∣∣2
λj(x)− λk(y)

≈ a2d

πN
P.V.

∫ 2

−2

√
4 − λ2

λj(x)− λ
dλ = a2d λj(x)

N
,

that is, comparable to the mean gap.

Though the series in a provided by Rayleigh–Schrödinger (infinite order) per-

turbation theory has zero radius of convergence, the considerations of the previous

paragraph provide an indication that the scaling g = a/
√
N is natural.

Supersymmetric models.

Another perspective on the models (1.2), and random operators in general, is given by

dual supersymmetric models, which were introduced by Efetov [21], following earlier

work by Wegner and Schäfer [35, 42]; see further the monograph of Wegner [44] and the

mathematical review of Spencer [41]. In the supersymmetric approach, E|(H−z)−1(x,y)|2
is expressed as a two-point correlation in a dual supersymmetricmodel. Fixinga > 0 and

setting g = a√
N
, the supersymmetric models dual to (1.2) should converge, asN → ∞, to a
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supersymmetric σ -model withU(1, 1 | 2) symmetry (in the unitary case) andOSp(2, 2 | 4)
symmetry (in the orthogonal case), at temperature determined by a and the value of

the density of states. These σ -models are conjectured to exhibit a phase transition in

dimension d ≥ 3. This provides additional support for the scaling (1.3).

As to rigorous results, a mathematical proof of the existence of phase transition

for the supersymmetric σ -models remains a major challenge. Progress was made by

Disertori, Spencer, and Zirnbauer [19, 20], who rigorously established the existence of

phase transition for a supersymmetric σ -model with the simpler OSp(2 | 2) symmetry.

Presumably, the analysis of the Efetov σ -models presents additional challenges.

The convergence of the dual supersymmetric models to the corresponding σ -

models is, to the best of our knowledge, not yet mathematically established. Moreover,

a strong form of convergence is required to infer the existence of a phase transition

before the limit; convergence of the action does not by itself suffice.

Lower bounds on the density of states.

The upper bound in Theorem 2 is often sharp up to a multiplicative constant. One can

obtain complementary bounds to Theorem 2 in terms of the second moment

s22 :=
1∑k
j=1 Nj

E trH2 = 1∑k
j=1 Nj

E

∫
λ2N (H , dλ) .

Namely, for any 0 < t < s2 there exists an interval I ⊂ [−2s2, 2s2] with |I | = t for which

EN (H , I) ≥ 1

10s2

k∑
j=1

Nj |I | , (4.1)

since the failure of this bound would imply that

EN (H , [−2s2, 2s2]) ≤
⌈
4s2
t

⌉
t

10s2

k∑
j=1

Nj ≤ 1

2

k∑
j=1

Nj

in contradiction to Chebyshev’s inequality. In the applications to the orbital models (1.2)

and to Gaussian band matrices (e.g., Definition 1.4 with ψ as in (1.15) and φ decaying

sufficiently fast), the quantity s2 is itself bounded by a constant, whence Theorem 2 is

sharp in these cases.

It is plausible that, for orbital models and band matrices, bounds of the type

(4.1) also hold for individual intervals sufficiently close to the origin; see Wegner [43]

for the case N = 1.
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Three open questions.

We use this opportunity to recapitulate a few of the open questions pertaining to the

block Anderson and Wegner orbital models (1.2).

(1) Is it true that in dimension d ≥ 3 one has the following converse to Theo-

rem 1: for g ≥ C(d)N−1/2, there exist energies λ at which exponential decay

of the form (1.6) does not hold, at least, for large N? Absence of exponen-

tial decay for an interval of energies could be considered as a signature of

delocalisation.

(2) Consider the case of fixed g and N → ∞. Is it true that the density of states,

the density of the measure (1.11), converges, as N → ∞, in uniform met-

ric? Convergence in the weak-∗ metric (to an explicit limiting measure) was

proved by Khorunzhiy and Pastur in [27, 31]. To upgrade their result to

uniform convergence, it would suffice (by a compactness argument) to show

that the density of states is equicontinuous inN as a function of the spectral

parameter λ.

(3) Is the density of states a smooth function of the spectral parameter? It is

expected to be analytic for all values of g > 0 and N ≥ 1. See further the

results of [14, 15] discussed after the proof of Corollary 1.3, and the work

[16] and references therein pertaining to the Anderson model (N = 1).
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